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Plankton lattices and the role of chaos in plankton patchiness

R. M. Hillary*
RRAG, Department of Environmental Science & Technology, Imperial College, London SW7 2BP, United Kingdom

M. A. Bees
Department of Mathematics, 15 University Gardens, University of Glasgow, Glasgow G12 8QW, United Kingdom
(Received 7 August 2003; published 31 March 2004

Spatiotemporal and interspecies irregularities in planktonic populations have been widely observed. Much
research into the drivers of such plankton patches has been initiated over the past few decades but only recently
have the dynamics of the interacting patches themselves been considered. We take a coupled lattice approach
to model continuous-in-time plankton patch dynamics, as opposed to the more common continuum type
reaction-diffusion-advection model, because it potentially offers a broader scope of application and numerical
study with relative ease. We show that nonsynchronous plankton patch dyné@h@cdiscrete analog of
spatiotemporal irregularijyarise quite naturally for patches whose underlying dynamics are chaotic. However,
we also observe that for parameters in a neighborhood of the chaotic regime, smooth generalized synchroni-
zation of nonidentical patches is more readily supported which reduces the incidence of distinct patchiness. We
demonstrate that simply associating the coupling strength with measureméeffective turbulent diffusiv-
ity results in a realistic critical length of the order of 100 km, above which one would expect to observe
unsynchronized behavior. It is likely that this estimate of critical length may be reduced by a more exact
interpretation of coupling in turbulent flows.
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[. INTRODUCTION the lattice point The reaction dynamics are governed by the
function F(S)=[F(s,),F(s,), . . . ,F(s,)]". Thenxn lattice
The observation of patchiness in oceanic plankton popueoupling matrix&, is given by
lations is a well documented phenomeriéh Many driving

mechanisms for patchiness have been suggested, from large —€ € o - 0

scale turbulent advectiof2] to small scale individual re- P S 0

sponses such as predator avoidance and buoy@jcyre- &=\ . ) ) . . . (2
gardless of the formative mechanism, the dynamics of these ; ; ; : :

“patches” of plankton are generally not independent as 0 0 €1 —€n1

many forms of coupling can exist between nearby patches

(for instance, diffusive coupling or the effects of higher ande >0 Vi. This defines a chain af coupled oscillators
predatory choice In this paper, we shall demonstrate thatwith zero flux boundary conditior{$]. For our purposes, we
spatiotemporally varying dynamics can arise from a numbetonsider the species coupling matri€&s to be the

of different sources. In Refl4] a “patchy” version of a m-dimensional identity matrix, meaning all species in each
standard reaction-diffusion equation was considered wherelyyatch are locally coupled. For the case where e Vi, it
each patch is diffusively coupled but has spatial variations iwas seen in Ref§7—9] that one can block diagonalize the
the reaction system. Specifically, these spatial variationgacobian matrix for small perturbations of the globally syn-
were introduced to model the effect of fish school motionchronized state using discrete Fourier transforms which sepa-
and spatial differences in higher predatory pressure. Howrate transverse variatiorigoverning the stability of the syn-
ever, planktonic mixing behavior was modeled by an isotrochronized regimefrom variations inside the synchronized
pic diffusion term so there was no investigation of any spamanifold. In general, there will be threshold values of the
tially heterogeneous mixing variations. Here, we propose &calar coupling for which we see transitions from synchro-
spatially one-dimensionally discretized paradigm for patchized to unsynchronized dynamics. These values afre
dynamics. Plankton populations are best represented as coflependent upon the linearized reaction dynamics, the forms
tinuous time variables due to the effect of overlapping genof the Coup”ng matricefl_ anng, and also on the number

erations[5], so consider the following model: of oscillators,n.
_ In the natural world, this symmetric form for the coupling
S=F(S)+(EL®E)S, (1) is likely to be an overly optimistic assumption, leading us to
consider the nonsymmetric coupling matrix seen in &4.
where S=(s,,s,, ... ,s,)" represents the species presentWe consider larger scale patchiness and, at these spatial
(the s are m-dimensional vectors ant=1, ... n denotes scales, any movement between patches is most probably due

to oceanic mixingby and large not species dependent, hence
the assumption thafs=1,,) rather than individual motile
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TABLE |. Default parameter values for the NPZ model defined in 4.

Parameter Symbol Default value
Phytoplankton growth rate a 0.2 m tday?
Light attenuation by water b 02m?
Light attenuation by phytoplankton c 0.4 nf(gC)*
Higher predation of zooplankton d 0.142 gCm?3day !
Nutrient half-saturation constant e 0.03gCcm?
Cross-thermocline exchange rate k 0.05 day !
Phytoplankton respiration r 0.15 day !
Phytoplankton sinking s 0.04 day?!
Lower mixed level nutrient concentration No 1gCm?
Zooplankton growth efficiency a 0.25
Zooplankton excretion fraction B 0.33
Regeneration of zooplankton excretion y 0.5
Zooplankton grazing rate N 0.6 day?!
Zooplankton half-saturation constant o 0.035 gCm?®

Patch to patch flux Bifurcation parameter

m

For individual dynamics that are chaotic, and where r the phytoplankton respiration rate. Hereand 8 describe
=eV i, systems such as that in E{) are known to give zooplankton growth efficiency and excretion. Finaly, X,
rise to spatiotemporally chaotic dynamics, for certain regionsind x denote the rates of recycled higher predation, zoop-
of the coupling parameter spaf@9,10. Also, for nonlocal  |ankton grazing, and the zooplankton grazing half-saturation
coupling in the lattice, such systems display “cluster” syn- coefficient, respectively. See RgL3] for more details. Typi-
chronization[11,12: certain patches are in synchronization, ¢4 parameter values and units of the above quantities are
yet there is no synchronization between these synchronizeglesented in Table |.
clusters. In this paper we consider only simple diffusive, The nature of the higher predatory response is a some-
nearest-neighbor coupling, akin to a discretized reactionghat contentious subject. The model as above employs a
diffusion system with no-flux boundary conditions. linear functional response, but it has been suggested that a
_To represent the reaction dynamiesve use a relatively g adratic or Holling type Il form may be more appropriate.
simple three component nitrogen-phytoplankton-zooplanktoyowever, we choose the simple linear form so as not to
(NPZ) biomass model, so that=(N,P,Z). This particular  entangle more complex higher predatory resporfsesud-
NPZ model was constructed in R¢L3] and investigated in ing any density dependence which may possibly be associ-
detail in Refs[14] and[15]. It takes the form ated with the predator having the option of choosing between
prey patchesthat may be better included in the patch cou-

dN Na \BP? pling mechanism. The dynamics of the uncoupled system are
dat (e+N)(b+cP) P+rP+ mZ“L ydZ well documented15] from equilibria to stable limit cycles to
chaos under variations of the closufegher predationrate
+Kk(No—N), d. Unless explicitly stated, we shall consider cases where the

individual patch dynamics are chaotic as these cases are the
\ P2 most interesting in terms of possible routes to nonsynchro-
rP— ———Z—(s+Kk)P, nous patch dynamics. In the next two sections we show that,
u’+P? in our spatially discrete system, the transition to nonsynchro-
nous collective dynamics can occur from a variety of differ-

dP_ Na b
dt  (e+N)(b+cP)

dZ  a\P? ent mechanisms. In Sec. Il we introduce the concept of patch
T ———Z—dZ (3)  synchronization and describe numerical and theoretical re-
U w?+P sults for the stability of our two patch paradigm system and

how this might extend to an array of coupled patches, respec-
Here,a is a measure of the maximum growth rateRpb  tively. We also estimate a critical length for the transition
represents light attenuation by water, angpecific light at-  from synchronous to nonsynchronous behavior, subject to a
tenuation by the phytoplankton themselves. The higher preturbulent diffusive coupling assumption. In Sec. Il we look
dation is denoted byl ande is the half-saturation constant at the effect of process noise and slight differences in the
due to the uptake of nutrient by the phytoplankton. Phy-underlying patch reaction parameters. This latter phenom-
toplankton are lost from the system by two mechanismsenon can lead to the generalized synchronization of the
sinking of P given bys and the cross-thermocline exchange patches. Also, we discuss the role of chaotic dynamics in
rate(with deep water devoid of phytoplankfodenoted byk.  these phenomena and implications for plankton patch dy-
N, represents the nutrient level below the mixed layer anchamics.
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II. PATCH SYNCHRONIZATION 0.01

Our main aim is to reveal under what conditions the indi-
vidual patch dynamics cease to be synchronous, giving rise 0.00 -
to spatial(as well as temporalirregularity throughout the
patch lattice. Much work in recent years has been concerned 001
with the general behavior and synchronization of coupled
oscillators. By synchronization we mean that the asymptotic 5
dynamics of all the individual patches are identical and are < —0.02
constrained to a manifold which we call ; defined by

Ms={s1,S, ... Slsi()=s(t)="---=5,(D)}. (4

By inspection of Eq(2) we see thak;(&,);;=0. Hence, -0.04
the synchronization manifol 5 is invariant under the ac-
tion of the flow defined in Eq.1). The boundary of synchro-

nous and nonsynchronous behavior corresponds to a symme- _O'%S'ooo 0.002 0.004 0.006 0.008
try breaking bifurcation by which the synchronous attractor £

A e Mg loses stability transverse td s. This “blowout” bi- _ _
furcation[16,17] can be detected by calculating a variant of ~ FIG- 1. A plot of the maximal normal Liapunov exponedt®*
the Liapunov exponent. The Liapunov expongt] of the vs the patch coupling. We see that the first blowout bifurcation

occurs around,.=0.002. Just below this value of the coupling, the

base pointx e A in the directionue T,Mg is given b )
P xMs1s g y synchronous stata will cease to be an attractor.

AX,u)= lim EJTInHDFt(u)Hdt, (5

TJo called normal parameters as they only affect the dynamics

normal toM 5. This ensures the continuity of the , with

whereDF! represents the Jacobian of the dynamics at time respec; to nqrmal parameters, allowing the definition of a

and T,M is the tangent space ofl ; at the pointx. The clear bifurcation point. For normal parameters Ott and Som-
. .

normal Liapunov exponent) , (x,V), is defined as _merer[16] categorized the scenario in'gq two types of b.‘?ha"'

ior. After the loss of transverse stability, initial conditions

1T close toA experience a transient orbit very similar to the
A, (X,v)=lim Tf In[[TL(r mgr ©DF'(V)[[dt,  (6)  chaotic trajectories i However, eventually they will move

Toe 020 away toward some other attractor. The second case also has

L trajectories with nearby initial conditions shadowing orbits in

where (TyMg)~ is the space normal to the tangent spacep p; they periodically burst away from synchronicity, a phe-
TxM s andIly denotes an orthogonal projection onto the Vec-n,menon known asn-off intermittencyonly to return to the

tor spaceV. If we assume thah supports some natural, er- gpaqowing behavior. In the latter case, the nonsynchronous
godic invariant measurg, then the time averages defined in 4racting set is said to leuck[17] to the invariant manifold
Eq. (5) and Eq.(6) will be, almost everywhere, equal to the M.
Space averages In Fig. 1 we present the maximal normal Liapunov expo-
nent\"®, which has been calculated for the two patch, sym-
)\:f IN|DF(u)|ldum(x) (7)  metric coupling caseg;=e€,=e. We see that the synchro-

A nous state initially loses transverse stability belew €.
=0.002(3 d.p) as\ "™ passes through zero. There are iso-
lated regions where the attractor regains transverse stability
but, on the whole, the synchronized regime is unstable below

A= J In||H(TXMS)L oDF(V)|[du(x), (8)  this value of the coupling. In Fig. 2 we show the attractors in
A (N4,N,) space fore;=€,=0.003 (just abovee;) and for

=¢€,=0.001(just belowe,) to illustrate the form of solu-

.. €
and consequently converge o a finite set of constant Valuptﬁl)ns before and after the blowout bifurcatitthis is an ex-
referred to in Ref[10] as the normal spectrum of the attrac- ample of on-off intermittency

tor A. These normal exponents measure the contraction or The blowout bifurcation seen previously is not limited to

expansion of perturbations transver§dMg.al):‘ )‘,T Histhe system of just two coupled oscillators. Transitions from
largest normal exponent then the sign)df** dictates the globally synchronized to globally unsynchronized regimes
(I(_)cal)_ stability of A. If |_t is negat_lvg t_hen srr_lgill perturbzmons have been seefi7—9|, for a variety of different coupling
will die out exponentlallmyaxbut if it is positive then distur- matrices£, and&s, using various Rssler-type oscillators to
bances initially grow~e*: ' until this growth is checked by represent(-). The asymmetric coupling scenario we con-
the nonlinear term&ndA, while still an attractor irM g, has  sider is, we suggest, more biologically relevant but seems to
a basin of attraction with zero Lebesgue measure in the fulhave been hitherto largely ignored in the literature. The non-
phase spageParameters such as the diffusive coupkngre  symmetric nature of the lattice coupling matrix does not ad-

T—x

and
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FIG. 2. Attractors in the;,N,) plane beforeg; = e,=0.003(left), and after,e; = e,=0.001(right), the blowout bifurcation. We can
clearly see that after the blowout bifurcation, the symmetry of the system is brokew,attiN, evolve in a nonsynchronous manner. We
suggest in this paper that this is a possible route to plankton spatiotemporal patchiness.

mit by extension a spatiallydiscret¢ modal decomposition could also give rise to globally unsynchronized dynamics. To
and subsequent block diagonalization of the lattice Jacobiaivestigate this hypothetical scenario, let us consider the
For the symmetric case, this diagonalization allows for relavariational equation for the vector variablel
tive ease of numerical study of the transverse Liapunov ex=(Z;, ... ,;,_1)", Where {=s—5.,, with the Jacobian
ponents (corresponding to discrete spatial modeBlere, matrix DF evaluated at the synchronous solutidi=Q),
there appears to be no simple manner by which we can com-
pute the transverse Liapunov exponents, thus making nu-
merical study of such systems increasingly computationally
expensive as increases.

Of interest is the possibility that local coupling variations and the —1)X (n—1) matrix £ given by

{=(l,_1®DF+ &L @1 )¢, (9)

— (€1t €y) €3 0 0
€ — (€2t €3) €4 0
gt: 0 € — (€3t €,) - 0 ) (10
0 0 €n-2 —(€n-11€,)

The system in Eq(9) is the variational equation for small The simplest scenario that one could envisage is where, to
perturbations transverse to the synchronization manifoldbegin with, =€V i. We shall assume that there is some
From the structure of;, we can see that, barring the critical value of the scalar coupling;= ¢, (depending on
“pboundary” lattice pointsi=1 andn—1, the coupling term DF, &, &, andn), below which the synchronous state is
¢ directly affects only the dynamics of the variablgs,,  unstable. If we have>e., but|e— ec[<e., then what hap-

&, andg . ;. Let us consider the following decomposition of Pens to the system if just one of the lattice point coupling
the full lattice phase spacs, parameterse; , is varied? Varying only thig; affects trans-

verse perturbations of the synchronization manifold in the
localized spaces;. We expect that there exists a threshold
S=5,858- -85, (11D value of e for which small perturbations to the synchroniza-
tion manifold inS; do not die out and in fact grow, leading to
andseS Vi. The variables,_;, &, and¢ ., govern the the existence of one, positive normal Liapunov exponent.

fate of small perturbations of the synchronization manifoldHowever, this locally originating blowout bifurcation must in
in the spaceS;, defined by fact manifest itself as a loss of stability of the globally syn-

chronized statéa proof of which is given in Appendix A
(o To illustrate this effect numerically, a lattice of eight dif-
Si=®j-i-15. (12 fusively coupled NPZ systems was considered. Numerical
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FIG. 3. N;(t)—N;, 4(1), fori=2,3,4, and 5 after any transient behavior has gone. The synchronized solution is unstable throughout the
whole lattice. For this coupling scenarie,=0.001 and the othe¢; are set equal to 0.008, above the symmetric coupling threshodd of
~0.0075. The simulations here were run for what amounts to many years, but the time scales of the nonsynchronous variations are on the
scale of around a month or more. This is consisent with the large-scale temporal variations observed in plankton abundance.

investigation showed that, for the nearest-neighbor diffusivédrom synchronicity are greatest in the two regions exactly
coupling with a single scalare to represent coupling adjacenttd=4. We quantify this bursting by computing the
strength, the eight patch system exhibited globally synchrofollowing time average:
nous behavior for coupling strength abase 0.0075. In line 1T 1T
with the theoretical scenario discussed previously, we re- T : T ey
duced the value of one of the coupling parametersthis <§'>7T|[nm TJO |Gt TITL Tjo Is(=sa(D]dt,
casee,) when the system is close to the global loss of trans- (13)
verse stability. In Fig. 3, we plot the temporal difference in
the nutrient variables for adjacent patchBs;-N;, 4, for i which (under the natural assumption that the attractor is er-
=2,3,4, and 5 so that we look at the dynamics transverse tgodic) converges(almost everywhepeto a constant value,
the synchronization manifold in the lattice points closest toindependent of the initial conditioig;(0), . . .,&-1(0)),
the region where we have decreased the couplingeFtass  for eachi by Birkhoff's ergodic theorem(Eckmann and
than around 0.001, the globally synchronous state loses st&uelle [18]). Nonzero values of¢) are indicative of non-
bility, giving rise to the dynamics seen in Fig. 3. synchronous dynamics while for synchronized syste(i}3,

As can be seen from Fig. 3, the magnitude of the burstsvill converge to zero a§—<. Table Il shows the numerical

TABLE II. Bursting measure defined in E€L3) for the case of a blowout from altering only one coupling
parametefrow 1; €,=0.001;V i #4, ¢,=0.008) and where all the coupling parameters are equal but below
the synchronization thresholdow 2; €;=0.001V i).

i 1 2 3 4 5 6 7

(&) (e,=0.001;Vi+#4, ¢=0.008) 0.006 0.0045 0.012 0.013 0.0044 0.0037 0.0059
(&) (,=0.001V i) 0.061 0.054 0.055 0.054 0.056 0.055 0.06
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results for the values of the quantity defined in EL3) for ~0.0008 day®. For our eight patch system, the critical cou-
the situation where we lower only one value of the couplingpling value, for the symmetric case, was=0.0075; this
(first row; €,=0.001; VY i#4, =0.008) and when all the would then correspond to a length scale of around 100 km,
values of the coupling are the same but below the synchrdor the number of patches described. This estimated relation-
nization thresholdsecond row;e;=0.001V i). ship on the patch-to-patch flukased on turbulent diffusive
As can be seen from Table II, for the first case we see thatoupling represents a kind of upper bound on the length
(&) varies as we move away from the lattice point for whichscale(and number of patchggor which we expect to see
we decreased the coupling, yet it displays a symmetric desynchronized patch dynamics. This is because the advective
crease. This is in contrast with the second scenario where thocesses causing the coupling may manifest themselves at a
corresponding lattice values ¢f;) are almost identical. We length scale belowA; as a result, the diffusive coupling
point out that this similarity is not supported at the lattice strength would decrease, thus lowering the threshold for
boundary points. For periodic boundary conditions, the quanwhich unsynchronized patch dynamics are possible. The re-
tities (&) converged to some value independent,dbr the  lationship in Eq.(15) suggests that both the extent of the
symmetric coupling =€V i) case, due to the shift- patch system{, and the number of patches, strongly in-
invariant[7] nature of the coupling. Other statistics may re-fluence the realizable nature of the proposed blowout bifur-
veal the nature of these effects. cation to patchiness; for our particular model and coupling
It is worth noting that convergence of the bursting mea-scenario, the above results suggest that such a blowout bifur-
sures(&) was quite slow, the results given were for®10 cation can occur within a physically realistic, and experimen-
iterations; these differed little from results obtained attally observable, range of length scales.
750000 iterations but did differ somewhat from results ob- For scenarios where more than one coupling parameter is
tained at 500 000 iterations. We hypothesize that the reasoraried, we can expect a more complicated interplay of local
for this is that the time average in E¢L3) must be long stabilizing and destabilizing influences. In general, when al-
enough to smooth out sporadic bursting effects. lowing for local coupling variations, one is almost certain to
These numerical simulations give some weight to the ide@bserve such locally originating blowout bifurcations, for a
that, if we allow for local coupling variations, a global blow- variety of coupling parameter combinations. We also hypoth-
out can arise from a more localized event. As seen in Tablesize that, as was seen in the scalar coupling systems studied
I, the asynchronous bursting is strongest around the regioim Refs.[7-9], the nature of the coupling matri&;, , and the
where the coupling parameter is decreased. While computingumber of coupled oscillators, will affect the occurrence
the point at which the maximal normal Liapunov exponentof any loss of synchronization in the coupled lattice. Numeri-
becomes positive gives us the parameters for which synchraal simulations, for different numbers of patches, revealed
nization becomes unstable, the simple ergodic average burssimilar behavior(but different critical values, as mentioned
ing quantity defined in Eq.13) provides information on the abové to that seen in our eight patch model system. Using
local lattice dynamics after the blowout event, if only in other population models yields similar behavior; in fact, any
terms of the severity of the asynchronous behavior. system which exhibits blowout bifurcations in the well-
A final, yet important, quantitative issue is whether thesestudied symmetric coupling systems is very likely to display
proposed blowout bifurcations, leading to plankton patchi-similar behavior to the examples given here. In these two
ness, are physically possible. In the system considered hergenses(results qualitatively independent of the number of
the coupling is of a spatially discrete, spatial-scale-dependematches; behavior expected in any system displaying blowout
diffusive form; this may be considered a simplistic approachbehavior in the symmetric regimeve would consider the
to modeling the turbulent transport of oceanic plankton. Inresults robust, in terms of general coupled systems. Allowing
the celebrated paper by Okuh9], an experimental rela- asymmetric coupling entrains a richer variety of behavior
tionship between turbulent diffusio®(¢) and the spatial and, although we have touched on some of the theoretical
scale ¢ was derived for passive tracers in the horizontalaspects of this type of coupling, more work is needed to fully
plane. It was observed that, f@¥(€) in cn?s ! and¢ in  elucidate the nature of the driving mechanisms.
cm,

D(£)~0.01¢115 (14) Ill. FURTHER PATHWAYS TO IRREGULAR
PATCH DYNAMICS
Given a specific number of patchessay; a specified size

€ of the patch system; and a corresponding spatial discreti- In the preceding secpon we described how sufficiently
zation and characteristic length scale= ¢/n, the flux ratee small levels of the coupling parameters allow for the onset of

between adjacent patches satisfigd)~D(A)/A2. Thus spatiotemporally heterogeneous patch dynamics via the loss

i b f transverse stability of the synchronized state, but this is
we | | formula f Eq.(1 0 - . ’
can employ an empirical formula far, using Eq.(14), not the only desynchronizing mechanism. We have not yet

and addressed the situation where there are differences in the
€(A)~0.0In2A ~085, (15) underlying reaction dynamics of each patch and we must
also consider the effect of low levels of system noise.
So, for n=8, if we let £=10°cm (10 km), € Riddled basins of attraction were first investigated in Ref.

~0.04 day !; for ¢=10" cm (100 km, we have thate  [20]. A basin of attraction3(A) of an invariant sef\ is said
~0.006 day?!; and for ¢=10°cm (1000 km, e to belocally riddledif there existss>0 such that, for arbi-

031913-6



PLANKTON LATTICES AND THE ROLE OF CHAOS IN . .. PHYSICAL REVIEW B9, 031913 (2004

trary xe B(A) and anye>0, thee ball B,(x) contains a of the form of the parametric perturbati¢such as stochastic
positive measure set of points whose orbits exceed a distaneg deterministi¢; we do, however, define it, at least in terms

8 from A. A basin of attraction isglobally riddled if, for ~ of its magnitude, in Appendix B.

arbitrary x e B(A), B,(x) intersectsB(A) and the basin of Variation in the underlying parameters of plankton dy-
some other attractor with positive measure. This means th&@Mmics has been hypothesized to be a driver of phytoplank-
any open set irB(A) will have a nonzero fraction that will ton blooms such as _regl t|d§_26] and it is also feasible that _
either move a specified distance away from synchronicitynere are some variations in parameters over large spatial
(local riddling or converge to another, nonsynchronous at-Scales. What does this imply for our coupled patch lattice
tractor(global riddling. If the basin of attraction of, B(A), model? In 'general, there are three classes of behavior for
is either locally or globally riddled then the synchronousSystems with detuned parameters and each depends on the
state will not be stable to low levels of noise. Riddled basinsSiz€ Of the parameter mismatch and the strength of the cou-
form when one of the saddle cycles, from the usual cascad@/i"g- Exact synchronization of the systems is no longer pos-
to chaos, embedded iA becomes a repelling cycle. This S|bI_e._ However, Aframow_cret.al.[Z.Af] suggested ailess r!gld_
causes the creation of infinitely many repelling “tongues” dgflnltlon of synchronization in which the dy_namlcs o_f indi-
foliating off of A. For the case of local riddling, it is not too Vidual patches are related by some continugpsssibly
difficult to see that any amount of noise will, with probability SM0oth mapping and are thus said to begeneralized syn-

1, push all orbits into one of these repelling regions. Thechromz_atlon(GS). Hence there are three possibilities for the
orbit will then move some specified distance from synchro-dynamics of the patch lattice. o

nicity. This phenomenon has been dublatiactor bubbling (1) For small parameter mismatch and sufficiently strong
[21]. For the case of global riddling, we have a more extremeOUPling there exists a diffeomorphism mapping the dynam-
version of attractor bubbling as the orbit is alternately movedcS Of one patch to anotheA(is known asnormally hyper-

into the basins of attraction of the nonsynchronous and syri20lic [27). ) . )
chronous attractors. Whether the basin is locally or globally (2) For coupling strength below a certain value, differen-
riddled, noise driven intermittenctattractor bubblingwill ~tiability (and possibly other propertieare lost, but there still

give similar patch dynamics to the postblowout scenario de€XiSts a continuous relation between patcf829.
scribed previously. (3) Increasing the parameter mismat@hr equally de-

Numerical investigations did not reveal the presence ofreasing the couplingcan mean this deterministic relation is
riddling (either local or global for this particular system. [0St, and the patches evolve in an uncorrelated manner.
Global riddling has been observed in discrete, skew-product The first possibility, normal hyperbolicity of the attractor
type population modelf22] and local riddling seems a ge- A, can be numerl_cgl_ly established, again using Liapunov ex-
neric phenomenon in coupled oscillators so the absence @onents. The definition of normal hyperbolic[y7] requires
riddling here does not imply that it cannot occur for a differ- that vectors transverse IgM s experience contraction stron-
ent system. Intuitively, however, global riddling is not a 9€r than vectors |n3|dé’xM3_. If this condition is satisfied
likely phenomenon in such coupled systems. This is due tghen, for small parameter mismatches, the subsequent invari-
the strong nonlinear restraining mechanisms of most continu@nt manifold will be diffeomorphic tMgs. In terms of Li-
ous population modeléoundedness and positivity of solu- @Punov exponents, this means that we require that fox all
tions. This first property removes the basin boundary crisise A, Ve TM g™ andue T,Mg,
route from locally to globally riddled basif23] as this re- ma i
quires the(locally riddled basin of the synchronous state to AT206V) <ARM(X ), (16)
collide with its corresponding absorption area. For such max - ) )
population models as these, with bounded, positive solution&nerex " is the maximal normal Liapunov exponent and
for all bounded, positive initial conditions, this scenario A is the smallest Liapunov exponent &f However, as
seems very unlikely. The only other route to a globallynoted in Ref.[28], this is only a necessary condition not
riddled basin is the emergence of a new, nonsynchronougufficient as we cannot calculate the minimal Liapunov ex-
attractor located in one of the repelling regions of the locallyponent for all the saddle cycles embeddediWhether this
riddled basin of attraction. The biderectional, diffusive natureset of zero measure can generically effect the smooth persis-
of the coupling(for positive values of the coupling matrices tence ofA is still an open question.
at least makes this route unlikely as well. For the NPZ system in the chaotic regime, we find that

The final scenario we consider incorporates small discrepr o '=—0.096. We can directly compute this value because
ancies in the parameters of the reaction dynamics governindgpe unstable manifolds of the saddle cycles embeddedl in
each patch. This is a more general case of(Egbut where are contained irA [18]. Consequently, the Liapunov expo-
we allow for the fact that the dynamics governing eachnents associated with these cycles are all positive and, hence,
patch will not always be the same and/(S) the smallest exponent must then be that of the ergodic mea-
=(F1(51),Fa(sy), . . . Fa(s))". This type of patch param- sure of the chaotic attractor. Figure 4 shows a neutral normal
eter variation has been examined in the continuum sengeyperbolicity curve, in &;,e;) space, for the case of two
[4,25] with regard to spatiotemporal planktonic dynamics. Itcoupled NPZ systems. We add that the calculation of this
was found that by having distinct regions with different curve did not make use of Newton’s method to find the ze-
higher predatory pressure complex, spatiotemporally chaotimes of the functiorG(e;, €,) =\ "*{e1,6)—\x"(&1,€,) due
oscillations were possible. In this paper, we make no mentioto computational constraints. Instead we usedaanhoc
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FIG. 6. Plot of the three Liapunov exponentsfodis we vary the
closure parametead. The inset shows a close up round the chaotic
region atd~0.142. Note how the most negative Liapunov exponent
is almost a(qualitative mirror image of the neutral hyperbolicity

curve in Fig. 5.

FIG. 4. A plot of the neutral normal hyperbolicity curve in
(e1,€7) space. Above the curve the GS will be a diffeomorphism
(up to a set of zero measuieut not below. Some of the symmetry
of the curve is lost due to thad hocnumerical procedure but the
general trend is well captured.

search algorithm which we found captured much of the curve. Here, and in other work on the generalized synchroniza-

but unfortunately could not completely retain the curve’'stion of detuned, normally hyperbolic identical oscillators
symmetry. [31], only two coupled oscillators were considered. The ideas

To look at how this property varies with the dynamics of Presented by Josi@1] on normalk-hyperbolicity were for
the original patches Fig. 5 shows the same curvedie) two coupled patches; in Appendix B we demonstrate how the
space(symmetric coupling sa&=e;=¢,). Surprisingly we invariant manifold ideas generalize to the smooth general-
see that quite strong coupling is required forto be nor- ized synchronization of an arbitrary number of coupled,

mally hyperbolic, except within a neighborhood of the cha-N€ar-identical oscillators.
otic regime,d=0.142. In coupled oscillator systems, such as the one we are con-

The existence of this effect is reinforced by consideratiors'd€ring, a very common type of generalized synchronization
of Fig. 6 where we plot the Liapunov exponentsAfwith observed igphasesynchronization, where the amplitudes of

respect to the closure rate We find that there is always a the oscillators vary in an unsynchronized manner, but the

relatively large negative exponent except around the chaotighases are identical. This has been observed in arrays of
regime. Very negative values of™™ means we require Rossler oscillator$32], in epidemiological modelg33] and

4 Max e in three species resource-predator-prey mof@d3. In an-
strong coupling so tha ™ satisfies Eq(16). other papef35], we consider the implications of such phase

12 : : : synchronized dynamics in a more general ecological sense
and the role that chaotic dynamics might have in the forma-
tion of smooth generalized synchronization.

10

0.8 IV. CONCLUDING REMARKS

By viewing interacting plankton patches as a form of
coupled lattice model we have demonstrated several different
routes by which transitions from synchronoispatially ho-
mogeneousto nonsynchronousgspatiotemporally varying
dynamical regimes may be observed. This noncontinuum ap-
proach allows us to classify some of these transitions in
terms of bifurcationgblowout and riddling bifurcationsWe
0.0 s s f use a two and an eight patch system as examples and de-
0.130 0.135 0.140 0.145 0.150 scribe how these results generalize rtaccoupled systems.

d Also we indicate what effect variations in patch system pa-

FIG. 5. Neutral normal hyperbolicity curve ini(e) space, over ameters may have and classify the types of generalized syn-
the same range as the plot of the Liapunov exponensinfFig. 6. chronization of patches. We also describe how one can com-
Note that strong coupling is required for normal hyperbolicity ex- Pute areas of parameter space in which each definition
cept around the chaotic regime, something also seen in a similapplies.
figure calculated with a structurally different population model in ~ We considered only normal coupling parameters here but
Ref. [35]. it is likely that some system parameters will not be normal

w 0.6

04

0.2
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parameters. Similar transitions are observed when normethods, further work should concentrate on how these two
normal parameters are variésee the review in Ref36]). viewpoints link together.

In order to analyze field data one must be able to differ- Initial numerical analyses of the case where the systems
entiate deterministic from stochastic relationships betwee@re no longer identical identified an area around the chaotic
patch dynamics and this requires further techniques. Tests féegime where the coupling strength needed to see smooth
determinism exist; Ref29] developed a confidence statistic 9eneralized synchronization of the patches was at its lowest.
to measure properties of generalized synchronization anth Ref.[35], we investigate whether this is an isolated phe-

Ref.[30] used a variant on the idea of false nearest neighbor@omenon as this could hint at an even more complex role for
chaos in coupled population models.

from time series as a test for determinism. In a paper cur b | hibi
rently in preparation we look at applying the idea of this ' OM macro to micro scales, many ecosystems exhibit a
atchy structure and factors such as migration mean that

weaker type of generalized synchronization to time serie® .
data of planktonic populations. Detecting deterministicallyeaCh p_opulatlon patch may be coupled to several of .the oth-
evolving collective dynamics may allow one to average the. = W'th the adt_jed problems of irregular geometries and
o S ) nonuniform coupling effects, it seems reasonable that a spa-
individual dynamics in such a waydepending on the

. AR e tially discrete approach may sometimes be more appropriate
“strength” of generalized synchronizatipras to minimize y bp y bprop

) S . . and advantageous for the analysis of the dynamics.
the error with the individual dynamics. These representative

time series could then be used for the prediction of future
trends and also as a more reliable data set for model fitting
processe$5], as fitting often takes no account of the patchy  The authors would like to acknowledge helpful discus-
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nature of the sampled population. sions with and suggestions from P. Ashwin.
Another open question concerns the existence of chaotic

plankton dynamics. Due to the huge amount of effort re- APPENDIX A: LOCALLY ORIGINATING

quired to collect a complete and reliable data set of spa- GLOBAL BLOWOUT

tiotemporal plankton distributions, it is difficult to distin-
guish between stochastic and possibly chaotic effects. T0 analytically demonstrate why a locally originating
However, field data of the dynamics of diatom communitiestlowout bifurcation must manifest itself as a global loss of
in Ref.[37] showed good evidence for the presence of Chaoss_ynchron|zat|on_, we first assume that the_re is some value of
Our assumption of underlying chaotic dynamics allows for a€i— 0 Pelow which the maximal normal Liapunov exponent
natural transition to spatiotemporakhaotio variations ~corresponding to the fate of small perturbations to the syn-
(patchineskin the plankton lattice dynamics. Using a model gctraomzatmn manifold inS; [see Eq.(12)], AT*i), is posi-
i s o ok ks 1 b SO ™%y e e o e o o,
augmentationgsuch as spatially distinct fish schools as seen. € can d.ecomposie the space ort-hogonal to the synchrpnlza-
in Refs. [25,4) to see such observed complex dynamicst_'on manifold, TMg, in the following manner. There exist
when moving to a spatially extended model. Indeed, it hadinear subspace§;D---DFy, such thatTMs=F& -
been suggested that chaos is a good natural state for popuf@F« [wherek=m(n—1)], and
tiong, Ref.[38], in t_hqt chaotic; quctuation; allow for_ the .
persistence of coexisting species and habitats, even in unfa- N o= lim }J In|[Tl70. ODGI(W)||dt V ve N

0

vorable conditions. S

Using a simple argument based on the measured effective (A1)
turbulent diffusivities of Okub$19], we have shown, for our
specific reaction model, that a blowout bifurcation to patchyywherex!>...>)\* ||| is the Euclidean norm oR™"~ )

dynamics is possible at a physically realistic scale of 100 kmgpnq the)\i are the Liapunov exponents normalNbs. Next,

However, it should be noted that this estimate is likely to be,e gefine the linear time evolution operatt(t) for £(t)
larger than estimates based upon better descriptions of MiXypich satisfies the following set of equations: ’

ing (and so couplingin turbulent flows. Time scales of large

scale patchiness show that spatiotemporal variations in the qu=A(1)40),
dynamics can occur over a time span of weeks and months
[2,26]. These variations may be associated with bursting
- A dA(t)
events from synchronicitgon similar time scaleésas may be - TEAY),

observed in Fig. 3. Continuum approaches to spatiotemporal

plankton dynamics have usually included turbulent advection

either by employing a simple, fixed-scale diffusive term A0)=Imn-1), (A2)
[4,25 with spatial parameter variations, or some form of

turbulent flow field[2,39]. In this paper, one view of our where " is the bracket on the right hand side of ES).
nonsymmetric coupling could be that of the turbulédiffu- The normal Liapunov exponents can now be defified8|
sive) transport of plankton, at some specified length scaleto be the logarithms of the eigenvalues of the following lim-
While these two approaches differ in their structure andting matrix:

031913-9
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im[AT(t)A(t)]Y2.

t—oo

(A3)

Let Wq, ..
ay, ..., of the limiting matrix defined in Eq(A3). Now,

Fk:Wk

Fio1=F@®Wy_q,

F]_:FzEBWl. (A4)

PHYSICAL REVIEW E 69, 031913 (2004

tems using invariant manifold theory. We now give a brief
review of the essential results. Let us consider the following
coupled dynamical system:

.,W, be the eigenspaces of the eigenvalues

s1=F(s) +Gy(51,9),

$=F(s2) +Ga(s1,5), (B1)
in R?™. Assuming that then-dimensional synchronization
manifold M 5 is invariant and locally attracting, what hap-
pens after a small perturbation to the underlying dynamics,
defined at least in magnitude lay<1.

For a suitably small perturbation, if the original invariant
manifold (and the attracting stat& therein is normally k-

Let us now consider some generic transverse perturbatioRyperbolic (for some positive integek), then the invariant

vectorwe TMs, where
w=w+ w2+ - Wk (A5)
andw! € W;. Since the matrixA T(t) A (t) is symmetric, the

eigenvectors are orthogonal. Hence,

k
wi?=3, Jwf. (n6)

and furthermore, withw AT(t)A (t)w=|A(t)w|?, we see
that

k

A= 2 [Abw]? (A7)
Using the fact thah] =In(e),
AW~ wie -+ e LW, (aB)
and if we factor out the term ilaz"it we have that
JA WP~ w2+ €207 D w2+ - -
+ 2 MDY wk2). (A9)

j 1
Now, ast—c, M At 0 becausen > .- >\K.
This means that the long term behavior of the perturbation
is dominated by the first term in EGA8). However, we have

one positive normal exponent and by definition this must be
A1 =1T%i). Hence, any generic perturbation will be expo-

nentially expanded and we have a global blowout.

APPENDIX B: SMOOTH GENERALIZED
SYNCHRONIZATION IN COUPLED
OSCILLATOR ARRAYS

manifold resulting from the perturbed dynamibs;, will be
diagonal-like[31] and diffeomorphi¢27] to M 5. The notion

of normal k-hyperbolicity is the same as that in EA.6),
save that the contraction of vectors normal to the manifold
must now bek times greater than that of vectors inside the
tangent space of the manifold.

This means that, given the projectiodd! and IT?, of
orbits on the attractoA onto the phase spaces of the sub-
systemss; ands,, respectively, the diagonal-like nature of
the perturbed manifol1 5 implies the existence of a diffeo-
morphism between the sel$’(A®) and IT?(A®). So, we
have the existence of some diffeomorphismsuch that
s,(1) = ¢(s:(t)), for orbits on the attractoonly. In fact, the
perturbed attractoA® can be expressed as the graph of the
function ¢:R™—R™.

Now, we generalize these ideast@oupled oscillators by
noticing that the identical synchronization manifold is again
an mdimensional submanifold of the full phase space in
R™". Suppose once again that there exists a locally attracting
stateAC M. As before, if we can guarantee that the largest
Liapunov exponent normal td s is smaller than the smallest
Liapunov exponent inside d¥l s (or k times smaller for nor-
mal k-hyperbolicity then the synchronization manifold will
persist, becomin$/ 5, which is diffeomorphic tavl 5. Once
again, this means that, given the projectidds onto the
phase space of the subsystem denoted, lipere exists a
diffeomorphisme; between the setd'(A?) andIT'*1(A?),
fori=1,... n—1. Consequentlyy i #j, the vectors(t) is
(smoothly expressible in terms of the vectg(t). We can
also analogously express the generally synchronized attractor
as the graph of the functio®: R"—R™"~1) and

[S2(1),85(1), - . . S(D]=D(s1(1)), (B2)

where
Di=¢i0¢i_10---Oo;. (B3)

The generalization mentions nothing of the type of cou-

For the case of bidirectional coupling, as considered hergling in the oscillator array, save the caveat that the identical
the paper by Josi31] outlined the conditions needed to see synchronization manifold be invariant under tlienper-
smooth generalized synchronization in near-identical systurbed lattice dynamics.
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