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Plankton lattices and the role of chaos in plankton patchiness
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Spatiotemporal and interspecies irregularities in planktonic populations have been widely observed. Much
research into the drivers of such plankton patches has been initiated over the past few decades but only recently
have the dynamics of the interacting patches themselves been considered. We take a coupled lattice approach
to model continuous-in-time plankton patch dynamics, as opposed to the more common continuum type
reaction-diffusion-advection model, because it potentially offers a broader scope of application and numerical
study with relative ease. We show that nonsynchronous plankton patch dynamics~the discrete analog of
spatiotemporal irregularity! arise quite naturally for patches whose underlying dynamics are chaotic. However,
we also observe that for parameters in a neighborhood of the chaotic regime, smooth generalized synchroni-
zation of nonidentical patches is more readily supported which reduces the incidence of distinct patchiness. We
demonstrate that simply associating the coupling strength with measurements of~effective! turbulent diffusiv-
ity results in a realistic critical length of the order of 100 km, above which one would expect to observe
unsynchronized behavior. It is likely that this estimate of critical length may be reduced by a more exact
interpretation of coupling in turbulent flows.

DOI: 10.1103/PhysRevE.69.031913 PACS number~s!: 87.23.Cc, 05.45.Pq, 92.20.Rb
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I. INTRODUCTION

The observation of patchiness in oceanic plankton po
lations is a well documented phenomenon@1#. Many driving
mechanisms for patchiness have been suggested, from
scale turbulent advection@2# to small scale individual re-
sponses such as predator avoidance and buoyancy@3#. Re-
gardless of the formative mechanism, the dynamics of th
‘‘patches’’ of plankton are generally not independent
many forms of coupling can exist between nearby patc
~for instance, diffusive coupling or the effects of high
predatory choice!. In this paper, we shall demonstrate th
spatiotemporally varying dynamics can arise from a num
of different sources. In Ref.@4# a ‘‘patchy’’ version of a
standard reaction-diffusion equation was considered whe
each patch is diffusively coupled but has spatial variation
the reaction system. Specifically, these spatial variati
were introduced to model the effect of fish school moti
and spatial differences in higher predatory pressure. H
ever, planktonic mixing behavior was modeled by an isot
pic diffusion term so there was no investigation of any s
tially heterogeneous mixing variations. Here, we propos
spatially one-dimensionally discretized paradigm for pa
dynamics. Plankton populations are best represented as
tinuous time variables due to the effect of overlapping g
erations@5#, so consider the following model:

Ṡ5F~S!1~EL ^ ES!S, ~1!

where S5(s1 ,s2 , . . . ,sn)T represents the species prese
~the si are m-dimensional vectors andi 51, . . . ,n denotes
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the lattice point!. The reaction dynamics are governed by t
function F(S)5@F(s1),F(s2), . . . ,F(sn)#T. Then3n lattice
coupling matrixEL is given by

EL5S 2e2 e2 0 ••• 0

e1 2~e11e3! e3 ••• 0

A A A A A

0 ••• 0 en21 2en21

D , ~2!

ande i.0 ; i . This defines a chain ofn coupled oscillators
with zero flux boundary conditions@6#. For our purposes, we
consider the species coupling matrixES to be the
m-dimensional identity matrix, meaning all species in ea
patch are locally coupled. For the case wheree i5e ; i , it
was seen in Refs.@7–9# that one can block diagonalize th
Jacobian matrix for small perturbations of the globally sy
chronized state using discrete Fourier transforms which se
rate transverse variations~governing the stability of the syn
chronized regime! from variations inside the synchronize
manifold. In general, there will be threshold values of t
scalar couplinge for which we see transitions from synchro
nized to unsynchronized dynamics. These values ofe are
dependent upon the linearized reaction dynamics, the fo
of the coupling matrices,EL andES , and also on the numbe
of oscillators,n.

In the natural world, this symmetric form for the couplin
is likely to be an overly optimistic assumption, leading us
consider the nonsymmetric coupling matrix seen in Eq.~2!.
We consider larger scale patchiness and, at these sp
scales, any movement between patches is most probably
to oceanic mixing~by and large not species dependent, hen
the assumption thatES5Im) rather than individual motile
responses.
©2004 The American Physical Society13-1
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TABLE I. Default parameter values for the NPZ model defined in Eq.~3!

Parameter Symbol Default value

Phytoplankton growth rate a 0.2 m21 day21

Light attenuation by water b 0.2 m21

Light attenuation by phytoplankton c 0.4 m2(g C)21

Higher predation of zooplankton d 0.142 g C m23 day21

Nutrient half-saturation constant e 0.03 g C m23

Cross-thermocline exchange rate k 0.05 day21

Phytoplankton respiration r 0.15 day21

Phytoplankton sinking s 0.04 day21

Lower mixed level nutrient concentration N0 1 g C m23

Zooplankton growth efficiency a 0.25
Zooplankton excretion fraction b 0.33
Regeneration of zooplankton excretion g 0.5
Zooplankton grazing rate l 0.6 day21

Zooplankton half-saturation constant m 0.035 g C m23

Patch to patch flux e i Bifurcation parameter
n
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For individual dynamics that are chaotic, and wheree i
5e ; i , systems such as that in Eq.~1! are known to give
rise to spatiotemporally chaotic dynamics, for certain regio
of the coupling parameter space@6,9,10#. Also, for nonlocal
coupling in the lattice, such systems display ‘‘cluster’’ sy
chronization@11,12#: certain patches are in synchronizatio
yet there is no synchronization between these synchron
clusters. In this paper we consider only simple diffusiv
nearest-neighbor coupling, akin to a discretized reacti
diffusion system with no-flux boundary conditions.

To represent the reaction dynamicsF we use a relatively
simple three component nitrogen-phytoplankton-zooplank
~NPZ! biomass model, so thats5(N,P,Z). This particular
NPZ model was constructed in Ref.@13# and investigated in
detail in Refs.@14# and @15#. It takes the form

dN

dt
52

Na

~e1N!~b1cP!
P1rP1

lbP2

m21P2
Z1gdZ

1k ~N02N!,

dP

dt
5

Na

~e1N!~b1cP!
P2rP2

lP2

m21P2
Z2~s1k!P,

dZ

dt
5

alP2

m21P2
Z2dZ. ~3!

Here,a is a measure of the maximum growth rate ofP, b
represents light attenuation by water, andc specific light at-
tenuation by the phytoplankton themselves. The higher p
dation is denoted byd and e is the half-saturation constan
due to the uptake of nutrient by the phytoplankton. Ph
toplankton are lost from the system by two mechanism
sinking of P given bys and the cross-thermocline exchan
rate~with deep water devoid of phytoplankton! denoted byk.
N0 represents the nutrient level below the mixed layer a
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r the phytoplankton respiration rate. Here,a andb describe
zooplankton growth efficiency and excretion. Finally,g, l,
and m denote the rates of recycled higher predation, zo
lankton grazing, and the zooplankton grazing half-saturat
coefficient, respectively. See Ref.@13# for more details. Typi-
cal parameter values and units of the above quantities
presented in Table I.

The nature of the higher predatory response is a so
what contentious subject. The model as above employ
linear functional response, but it has been suggested th
quadratic or Holling type III form may be more appropriat
However, we choose the simple linear form so as not
entangle more complex higher predatory responses~includ-
ing any density dependence which may possibly be ass
ated with the predator having the option of choosing betw
prey patches! that may be better included in the patch co
pling mechanism. The dynamics of the uncoupled system
well documented@15# from equilibria to stable limit cycles to
chaos under variations of the closure~higher predation! rate
d. Unless explicitly stated, we shall consider cases where
individual patch dynamics are chaotic as these cases are
most interesting in terms of possible routes to nonsynch
nous patch dynamics. In the next two sections we show t
in our spatially discrete system, the transition to nonsynch
nous collective dynamics can occur from a variety of diffe
ent mechanisms. In Sec. II we introduce the concept of pa
synchronization and describe numerical and theoretical
sults for the stability of our two patch paradigm system a
how this might extend to an array of coupled patches, resp
tively. We also estimate a critical length for the transitio
from synchronous to nonsynchronous behavior, subject
turbulent diffusive coupling assumption. In Sec. III we loo
at the effect of process noise and slight differences in
underlying patch reaction parameters. This latter pheno
enon can lead to the generalized synchronization of
patches. Also, we discuss the role of chaotic dynamics
these phenomena and implications for plankton patch
namics.
3-2
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II. PATCH SYNCHRONIZATION

Our main aim is to reveal under what conditions the in
vidual patch dynamics cease to be synchronous, giving
to spatial ~as well as temporal! irregularity throughout the
patch lattice. Much work in recent years has been concer
with the general behavior and synchronization of coup
oscillators. By synchronization we mean that the asympt
dynamics of all the individual patches are identical and
constrained to a manifold which we callMS defined by

MS5$s1 ,s2 , . . . ,snus1~ t !5s2~ t !5•••5sn~ t !%. ~4!

By inspection of Eq.~2! we see that( j (EL) i j 50. Hence,
the synchronization manifoldMS is invariant under the ac
tion of the flow defined in Eq.~1!. The boundary of synchro
nous and nonsynchronous behavior corresponds to a sym
try breaking bifurcation by which the synchronous attrac
APMS loses stability transverse toMS . This ‘‘blowout’’ bi-
furcation @16,17# can be detected by calculating a variant
the Liapunov exponent. The Liapunov exponent@18# of the
base pointxPA in the directionuPTxMS is given by

l~x,u!5 lim
T→`

1

TE0

T

lniDFt~u!idt, ~5!

whereDFt represents the Jacobian of the dynamics at timt
and TxMS is the tangent space ofMS at the pointx. The
normal Liapunov exponent,l'(x,v), is defined as

l'~x,v!5 lim
T→`

1

TE0

T

lniP (TxMS)' sDFt~v!idt, ~6!

where (TxMS)' is the space normal to the tangent spa
TxMS andPV denotes an orthogonal projection onto the ve
tor spaceV. If we assume thatA supports some natural, e
godic invariant measurem, then the time averages defined
Eq. ~5! and Eq.~6! will be, almost everywhere, equal to th
space averages

l5E
A
lniDF~u!idm~x! ~7!

and

l'5E
A
lniP (TxMS)' sDF~v!idm~x!, ~8!

and consequently converge to a finite set of constant va
referred to in Ref.@10# as the normal spectrum of the attra
tor A. These normal exponents measure the contraction
expansion of perturbations transverse toMS . If l'

max is the
largest normal exponent then the sign ofl'

max dictates the
~local! stability of A. If it is negative then small perturbation
will die out exponentially but if it is positive then distur

bances initially grow;el'
max t until this growth is checked by

the nonlinear terms~andA, while still an attractor inMS , has
a basin of attraction with zero Lebesgue measure in the
phase space!. Parameters such as the diffusive couplinge are
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called normal parameters as they only affect the dynam
normal toMS . This ensures the continuity of thel' , with
respect to normal parameters, allowing the definition o
clear bifurcation point. For normal parameters Ott and So
merer@16# categorized the scenario into two types of beha
ior. After the loss of transverse stability, initial condition
close toA experience a transient orbit very similar to th
chaotic trajectories inA. However, eventually they will move
away toward some other attractor. The second case also
trajectories with nearby initial conditions shadowing orbits
A but they periodically burst away from synchronicity, a ph
nomenon known ason-off intermittency, only to return to the
shadowing behavior. In the latter case, the nonsynchron
attracting set is said to bestuck@17# to the invariant manifold
MS .

In Fig. 1 we present the maximal normal Liapunov exp
nentl'

max, which has been calculated for the two patch, sy
metric coupling case,e15e25e. We see that the synchro
nous state initially loses transverse stability belowe5ec

50.002~3 d.p.! asl'
max passes through zero. There are is

lated regions where the attractor regains transverse stab
but, on the whole, the synchronized regime is unstable be
this value of the coupling. In Fig. 2 we show the attractors
(N1 ,N2) space fore15e250.003 ~just aboveec) and for
e15e250.001~just belowec) to illustrate the form of solu-
tions before and after the blowout bifurcation~this is an ex-
ample of on-off intermittency!.

The blowout bifurcation seen previously is not limited
a system of just two coupled oscillators. Transitions fro
globally synchronized to globally unsynchronized regim
have been seen@7–9#, for a variety of different coupling
matrices,EL andES , using various Ro¨ssler-type oscillators to
representF(•). The asymmetric coupling scenario we co
sider is, we suggest, more biologically relevant but seem
have been hitherto largely ignored in the literature. The n
symmetric nature of the lattice coupling matrix does not a

FIG. 1. A plot of the maximal normal Liapunov exponentl'
max

vs the patch couplinge. We see that the first blowout bifurcatio
occurs aroundec50.002. Just below this value of the coupling, th
synchronous stateA will cease to be an attractor.
3-3
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FIG. 2. Attractors in the (N1 ,N2) plane before,e15e250.003~left!, and after,e15e250.001~right!, the blowout bifurcation. We can
clearly see that after the blowout bifurcation, the symmetry of the system is broken andN1 andN2 evolve in a nonsynchronous manner. W
suggest in this paper that this is a possible route to plankton spatiotemporal patchiness.
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mit by extension a spatially~discrete! modal decomposition
and subsequent block diagonalization of the lattice Jacob
For the symmetric case, this diagonalization allows for re
tive ease of numerical study of the transverse Liapunov
ponents ~corresponding to discrete spatial modes!. Here,
there appears to be no simple manner by which we can c
pute the transverse Liapunov exponents, thus making
merical study of such systems increasingly computation
expensive asn increases.

Of interest is the possibility that local coupling variatio
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could also give rise to globally unsynchronized dynamics.
investigate this hypothetical scenario, let us consider
variational equation for the vector variablez
5(z1 , . . . ,zn21)T, where zi5si2si 11, with the Jacobian
matrix DF evaluated at the synchronous solution (z50),

ż5~ In21^ DF1E L
'

^ Im!z, ~9!

and the (n21)3(n21) matrix E L
' given by
E L
'5S 2~e11e2! e3 0 ••• 0

e1 2~e21e3! e4 ••• 0

0 e2 2~e31e4! ••• 0

A A A A A

0 ••• 0 en22 2~en211en!

D . ~10!
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The system in Eq.~9! is the variational equation for sma
perturbations transverse to the synchronization manif
From the structure ofE L

' , we can see that, barring th
‘‘boundary’’ lattice pointsi 51 andn21, the coupling term
e i directly affects only the dynamics of the variableszi 21 ,
zi , andzi 11. Let us consider the following decomposition
the full lattice phase space,S:

S5S1% S2% •••% Sn , ~11!

and siPSi ; i . The variableszi 21 , zi , andzi 11 govern the
fate of small perturbations of the synchronization manifo
in the spaceSi , defined by

Si5 % j 5 i 21
i 12 Sj . ~12!
d.
The simplest scenario that one could envisage is where
begin with, e i5e ; i . We shall assume that there is som
critical value of the scalar coupling,e5ec ~depending on
DF, EL , ES , andn), below which the synchronous state
unstable. If we havee.ec , but ue2ecu!ec , then what hap-
pens to the system if just one of the lattice point coupli
parameters,e i , is varied? Varying only thise i affects trans-
verse perturbations of the synchronization manifold in
localized spaceSi . We expect that there exists a thresho
value ofe i for which small perturbations to the synchroniz
tion manifold inSi do not die out and in fact grow, leading t
the existence of one, positive normal Liapunov expone
However, this locally originating blowout bifurcation must i
fact manifest itself as a loss of stability of the globally sy
chronized state~a proof of which is given in Appendix A!.

To illustrate this effect numerically, a lattice of eight di
fusively coupled NPZ systems was considered. Numer
3-4
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FIG. 3. Ni(t)2Ni 11(t), for i 52,3,4, and 5 after any transient behavior has gone. The synchronized solution is unstable through
whole lattice. For this coupling scenario,e450.001 and the othere i are set equal to 0.008, above the symmetric coupling thresholde
'0.0075. The simulations here were run for what amounts to many years, but the time scales of the nonsynchronous variations
scale of around a month or more. This is consisent with the large-scale temporal variations observed in plankton abundance.
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investigation showed that, for the nearest-neighbor diffus
coupling with a single scalare to represent coupling
strength, the eight patch system exhibited globally synch
nous behavior for coupling strength abovee'0.0075. In line
with the theoretical scenario discussed previously, we
duced the value of one of the coupling parameters~in this
casee4) when the system is close to the global loss of tra
verse stability. In Fig. 3, we plot the temporal difference
the nutrient variables for adjacent patches,Ni2Ni 11, for i
52,3,4, and 5 so that we look at the dynamics transvers
the synchronization manifold in the lattice points closest
the region where we have decreased the coupling. Fore4 less
than around 0.001, the globally synchronous state loses
bility, giving rise to the dynamics seen in Fig. 3.

As can be seen from Fig. 3, the magnitude of the bu
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from synchronicity are greatest in the two regions exac
adjacent toi 54. We quantify this bursting by computing th
following time average:

^zi&5 lim
T→`

1

TE0

T

izi~ t !idt5 lim
T→`

1

TE0

T

isi~ t !2si 11~ t !idt,

~13!

which ~under the natural assumption that the attractor is
godic! converges~almost everywhere! to a constant value
independent of the initial condition„z1(0), . . . ,zn21(0)…,
for each i by Birkhoff’s ergodic theorem~Eckmann and
Ruelle @18#!. Nonzero values of̂zi& are indicative of non-
synchronous dynamics while for synchronized systems,^zi&
will converge to zero asT→`. Table II shows the numerica
g
low

59
TABLE II. Bursting measure defined in Eq.~13! for the case of a blowout from altering only one couplin
parameter~row 1; e450.001;; iÞ4, e i50.008) and where all the coupling parameters are equal but be
the synchronization threshold~row 2; e i50.001; i ).

i 1 2 3 4 5 6 7

^zi& (e450.001; ; iÞ4, e i50.008) 0.006 0.0045 0.012 0.013 0.0044 0.0037 0.00
^zi& (e i50.001; i ) 0.061 0.054 0.055 0.054 0.056 0.055 0.06
3-5
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results for the values of the quantity defined in Eq.~13! for
the situation where we lower only one value of the coupl
~first row; e450.001; ; iÞ4, e i50.008) and when all the
values of the coupling are the same but below the sync
nization threshold~second row;e i50.001; i ).

As can be seen from Table II, for the first case we see
^zi& varies as we move away from the lattice point for whi
we decreased the coupling, yet it displays a symmetric
crease. This is in contrast with the second scenario where
corresponding lattice values of^zi& are almost identical. We
point out that this similarity is not supported at the latti
boundary points. For periodic boundary conditions, the qu
tities ^zi& converged to some value independent ofi, for the
symmetric coupling (e i5e ; i ) case, due to the shift
invariant @7# nature of the coupling. Other statistics may r
veal the nature of these effects.

It is worth noting that convergence of the bursting me
sures^zi& was quite slow, the results given were for 16

iterations; these differed little from results obtained
750 000 iterations but did differ somewhat from results o
tained at 500 000 iterations. We hypothesize that the rea
for this is that the time average in Eq.~13! must be long
enough to smooth out sporadic bursting effects.

These numerical simulations give some weight to the i
that, if we allow for local coupling variations, a global blow
out can arise from a more localized event. As seen in Ta
II, the asynchronous bursting is strongest around the reg
where the coupling parameter is decreased. While compu
the point at which the maximal normal Liapunov expone
becomes positive gives us the parameters for which sync
nization becomes unstable, the simple ergodic average b
ing quantity defined in Eq.~13! provides information on the
local lattice dynamics after the blowout event, if only
terms of the severity of the asynchronous behavior.

A final, yet important, quantitative issue is whether the
proposed blowout bifurcations, leading to plankton patc
ness, are physically possible. In the system considered h
the coupling is of a spatially discrete, spatial-scale-depend
diffusive form; this may be considered a simplistic approa
to modeling the turbulent transport of oceanic plankton.
the celebrated paper by Okubo@19#, an experimental rela
tionship between turbulent diffusionD(,) and the spatial
scale , was derived for passive tracers in the horizon
plane. It was observed that, forD(,) in cm2 s21 and , in
cm,

D~, !'0.01,1.15. ~14!

Given a specific number of patches,n say; a specified size
, of the patch system; and a corresponding spatial disc
zation and characteristic length scale,D5,/n, the flux ratee
between adjacent patches satisfiese(D)'D(D)/D2. Thus,
we can employ an empirical formula fore, using Eq.~14!,
and

e~D!'0.01n2D20.85. ~15!

So, for n58, if we let ,5106 cm ~10 km!, e
'0.04 day21; for ,5107 cm ~100 km!, we have thate
'0.006 day21; and for ,5108 cm ~1000 km!, e
03191
o-

at

e-
he

-

-

-

t
-
on

a

le
n

ng
t
o-
st-

e
i-
re,
nt
h
n

l

ti-

'0.0008 day21. For our eight patch system, the critical co
pling value, for the symmetric case, wase'0.0075; this
would then correspond to a length scale of around 100
for the number of patches described. This estimated relat
ship on the patch-to-patch flux~based on turbulent diffusive
coupling! represents a kind of upper bound on the leng
scale~and number of patches! for which we expect to see
synchronized patch dynamics. This is because the advec
processes causing the coupling may manifest themselves
length scale belowD; as a result, the diffusive coupling
strength would decrease, thus lowering the threshold
which unsynchronized patch dynamics are possible. The
lationship in Eq.~15! suggests that both the extent of th
patch system,,, and the number of patches,n, strongly in-
fluence the realizable nature of the proposed blowout bi
cation to patchiness; for our particular model and coupl
scenario, the above results suggest that such a blowout b
cation can occur within a physically realistic, and experime
tally observable, range of length scales.

For scenarios where more than one coupling paramete
varied, we can expect a more complicated interplay of lo
stabilizing and destabilizing influences. In general, when
lowing for local coupling variations, one is almost certain
observe such locally originating blowout bifurcations, for
variety of coupling parameter combinations. We also hypo
esize that, as was seen in the scalar coupling systems stu
in Refs.@7–9#, the nature of the coupling matrix,EL , and the
number of coupled oscillators,n, will affect the occurrence
of any loss of synchronization in the coupled lattice. Nume
cal simulations, for different numbers of patches, revea
similar behavior~but different critical values, as mentione
above! to that seen in our eight patch model system. Us
other population models yields similar behavior; in fact, a
system which exhibits blowout bifurcations in the we
studied symmetric coupling systems is very likely to displ
similar behavior to the examples given here. In these t
senses~results qualitatively independent of the number
patches; behavior expected in any system displaying blow
behavior in the symmetric regime! we would consider the
results robust, in terms of general coupled systems. Allow
asymmetric coupling entrains a richer variety of behav
and, although we have touched on some of the theore
aspects of this type of coupling, more work is needed to fu
elucidate the nature of the driving mechanisms.

III. FURTHER PATHWAYS TO IRREGULAR
PATCH DYNAMICS

In the preceding section we described how sufficien
small levels of the coupling parameters allow for the onse
spatiotemporally heterogeneous patch dynamics via the
of transverse stability of the synchronized state, but this
not the only desynchronizing mechanism. We have not
addressed the situation where there are differences in
underlying reaction dynamics of each patch and we m
also consider the effect of low levels of system noise.

Riddled basins of attraction were first investigated in R
@20#. A basin of attractionb(A) of an invariant setA is said
to be locally riddled if there existsd.0 such that, for arbi-
3-6
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trary xPb(A) and any«.0, the « ball B«(x) contains a
positive measure set of points whose orbits exceed a dist
d from A. A basin of attraction isglobally riddled if, for
arbitrary xPb(A), B«(x) intersectsb(A) and the basin of
some other attractor with positive measure. This means
any open set inb(A) will have a nonzero fraction that wil
either move a specified distance away from synchroni
~local riddling! or converge to another, nonsynchronous
tractor~global riddling!. If the basin of attraction ofA, b(A),
is either locally or globally riddled then the synchrono
state will not be stable to low levels of noise. Riddled bas
form when one of the saddle cycles, from the usual casc
to chaos, embedded inA becomes a repelling cycle. Thi
causes the creation of infinitely many repelling ‘‘tongue
foliating off of A. For the case of local riddling, it is not to
difficult to see that any amount of noise will, with probabili
1, push all orbits into one of these repelling regions. T
orbit will then move some specified distance from synch
nicity. This phenomenon has been dubbedattractor bubbling
@21#. For the case of global riddling, we have a more extre
version of attractor bubbling as the orbit is alternately mov
into the basins of attraction of the nonsynchronous and s
chronous attractors. Whether the basin is locally or globa
riddled, noise driven intermittency~attractor bubbling! will
give similar patch dynamics to the postblowout scenario
scribed previously.

Numerical investigations did not reveal the presence
riddling ~either local or global! for this particular system
Global riddling has been observed in discrete, skew-prod
type population models@22# and local riddling seems a ge
neric phenomenon in coupled oscillators so the absenc
riddling here does not imply that it cannot occur for a diffe
ent system. Intuitively, however, global riddling is not
likely phenomenon in such coupled systems. This is due
the strong nonlinear restraining mechanisms of most cont
ous population models~boundedness and positivity of solu
tions!. This first property removes the basin boundary cri
route from locally to globally riddled basins@23# as this re-
quires the~locally riddled! basin of the synchronous state
collide with its corresponding absorption area. For su
population models as these, with bounded, positive solut
for all bounded, positive initial conditions, this scenar
seems very unlikely. The only other route to a globa
riddled basin is the emergence of a new, nonsynchron
attractor located in one of the repelling regions of the loca
riddled basin of attraction. The biderectional, diffusive natu
of the coupling~for positive values of the coupling matrice
at least! makes this route unlikely as well.

The final scenario we consider incorporates small discr
ancies in the parameters of the reaction dynamics gover
each patch. This is a more general case of Eq.~1! but where
we allow for the fact that the dynamics governing ea
patch will not always be the same andF(S)
5„F1(s1),F2(s2), . . . ,Fn(sn)…T. This type of patch param
eter variation has been examined in the continuum se
@4,25# with regard to spatiotemporal planktonic dynamics
was found that by having distinct regions with differe
higher predatory pressure complex, spatiotemporally cha
oscillations were possible. In this paper, we make no men
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of the form of the parametric perturbation~such as stochastic
or deterministic!; we do, however, define it, at least in term
of its magnitude, in Appendix B.

Variation in the underlying parameters of plankton d
namics has been hypothesized to be a driver of phytopla
ton blooms such as red tides@26# and it is also feasible tha
there are some variations in parameters over large sp
scales. What does this imply for our coupled patch latt
model? In general, there are three classes of behavior
systems with detuned parameters and each depends o
size of the parameter mismatch and the strength of the c
pling. Exact synchronization of the systems is no longer p
sible. However, Afraimovichet al. @24# suggested a less rigid
definition of synchronization in which the dynamics of ind
vidual patches are related by some continuous~possibly
smooth! mapping and are thus said to be ingeneralized syn-
chronization~GS!. Hence there are three possibilities for th
dynamics of the patch lattice.

~1! For small parameter mismatch and sufficiently stro
coupling there exists a diffeomorphism mapping the dyna
ics of one patch to another (A is known asnormally hyper-
bolic @27#!.

~2! For coupling strength below a certain value, differe
tiability ~and possibly other properties! are lost, but there still
exists a continuous relation between patches@30,29#.

~3! Increasing the parameter mismatch~or equally de-
creasing the coupling! can mean this deterministic relation
lost, and the patches evolve in an uncorrelated manner.

The first possibility, normal hyperbolicity of the attracto
A, can be numerically established, again using Liapunov
ponents. The definition of normal hyperbolicity@27# requires
that vectors transverse toTxMS experience contraction stron
ger than vectors insideTxMS . If this condition is satisfied
then, for small parameter mismatches, the subsequent in
ant manifold will be diffeomorphic toMS . In terms of Li-
apunov exponents, this means that we require that for ax
PA, vPTxMS' anduPTxMS ,

l'
max~x,v!,lA

min~x,u!, ~16!

wherel'
max is the maximal normal Liapunov exponent an

lA
min is the smallest Liapunov exponent ofA. However, as

noted in Ref.@28#, this is only a necessary condition no
sufficient as we cannot calculate the minimal Liapunov e
ponent for all the saddle cycles embedded inA. Whether this
set of zero measure can generically effect the smooth pe
tence ofA is still an open question.

For the NPZ system in the chaotic regime, we find th
lA

min520.096. We can directly compute this value becau
the unstable manifolds of the saddle cycles embeddedA
are contained inA @18#. Consequently, the Liapunov expo
nents associated with these cycles are all positive and, he
the smallest exponent must then be that of the ergodic m
sure of the chaotic attractor. Figure 4 shows a neutral nor
hyperbolicity curve, in (e1 ,e2) space, for the case of two
coupled NPZ systems. We add that the calculation of t
curve did not make use of Newton’s method to find the
roes of the functionG(e1 ,e2)5l'

max(e1,e2)2lA
min(e1,e2) due

to computational constraints. Instead we used anad hoc
3-7
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search algorithm which we found captured much of the cu
but unfortunately could not completely retain the curv
symmetry.

To look at how this property varies with the dynamics
the original patches Fig. 5 shows the same curve in (d,e)
space~symmetric coupling soe5e15e2). Surprisingly we
see that quite strong coupling is required forA to be nor-
mally hyperbolic, except within a neighborhood of the ch
otic regime,d50.142.

The existence of this effect is reinforced by considerat
of Fig. 6 where we plot the Liapunov exponents ofA with
respect to the closure rated. We find that there is always
relatively large negative exponent except around the cha
regime. Very negative values oflA

min means we require
strong coupling so thatl'

max satisfies Eq.~16!.

FIG. 4. A plot of the neutral normal hyperbolicity curve i
(e1 ,e2) space. Above the curve the GS will be a diffeomorphis
~up to a set of zero measure! but not below. Some of the symmetr
of the curve is lost due to thead hocnumerical procedure but th
general trend is well captured.

FIG. 5. Neutral normal hyperbolicity curve in (d,e) space, over
the same range as the plot of the Liapunov exponents ofA in Fig. 6.
Note that strong coupling is required for normal hyperbolicity e
cept around the chaotic regime, something also seen in a sim
figure calculated with a structurally different population model
Ref. @35#.
03191
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Here, and in other work on the generalized synchroni
tion of detuned, normally hyperbolic identical oscillato
@31#, only two coupled oscillators were considered. The ide
presented by Josic@31# on normalk-hyperbolicity were for
two coupled patches; in Appendix B we demonstrate how
invariant manifold ideas generalize to the smooth gene
ized synchronization of an arbitrary number of couple
near-identical oscillators.

In coupled oscillator systems, such as the one we are c
sidering, a very common type of generalized synchronizat
observed isphasesynchronization, where the amplitudes
the oscillators vary in an unsynchronized manner, but
phases are identical. This has been observed in array
Rössler oscillators@32#, in epidemiological models@33# and
in three species resource-predator-prey models@34#. In an-
other paper@35#, we consider the implications of such pha
synchronized dynamics in a more general ecological se
and the role that chaotic dynamics might have in the form
tion of smooth generalized synchronization.

IV. CONCLUDING REMARKS

By viewing interacting plankton patches as a form
coupled lattice model we have demonstrated several diffe
routes by which transitions from synchronous~spatially ho-
mogeneous! to nonsynchronous~spatiotemporally varying!
dynamical regimes may be observed. This noncontinuum
proach allows us to classify some of these transitions
terms of bifurcations~blowout and riddling bifurcations!. We
use a two and an eight patch system as examples and
scribe how these results generalize ton coupled systems
Also we indicate what effect variations in patch system p
rameters may have and classify the types of generalized
chronization of patches. We also describe how one can c
pute areas of parameter space in which each defini
applies.

We considered only normal coupling parameters here
it is likely that some system parameters will not be norm

-
lar

FIG. 6. Plot of the three Liapunov exponents ofA as we vary the
closure parameterd. The inset shows a close up round the chao
region atd'0.142. Note how the most negative Liapunov expon
is almost a~qualitative! mirror image of the neutral hyperbolicity
curve in Fig. 5.
3-8
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parameters. Similar transitions are observed when n
normal parameters are varied~see the review in Ref.@36#!.

In order to analyze field data one must be able to diff
entiate deterministic from stochastic relationships betw
patch dynamics and this requires further techniques. Test
determinism exist; Ref.@29# developed a confidence statist
to measure properties of generalized synchronization
Ref. @30# used a variant on the idea of false nearest neighb
from time series as a test for determinism. In a paper c
rently in preparation we look at applying the idea of th
weaker type of generalized synchronization to time se
data of planktonic populations. Detecting deterministica
evolving collective dynamics may allow one to average
individual dynamics in such a way~depending on the
‘‘strength’’ of generalized synchronization! as to minimize
the error with the individual dynamics. These representa
time series could then be used for the prediction of fut
trends and also as a more reliable data set for model fit
processes@5#, as fitting often takes no account of the patc
nature of the sampled population.

Another open question concerns the existence of cha
plankton dynamics. Due to the huge amount of effort
quired to collect a complete and reliable data set of s
tiotemporal plankton distributions, it is difficult to distin
guish between stochastic and possibly chaotic effe
However, field data of the dynamics of diatom communit
in Ref. @37# showed good evidence for the presence of cha
Our assumption of underlying chaotic dynamics allows fo
natural transition to spatiotemporal~chaotic! variations
~patchiness! in the plankton lattice dynamics. Using a mod
with equilibrium or limit cycle dynamics, in the spatiall
homogeneous case, requires certain sometimesad hocmodel
augmentations~such as spatially distinct fish schools as se
in Refs. @25,4#! to see such observed complex dynam
when moving to a spatially extended model. Indeed, it
been suggested that chaos is a good natural state for po
tions, Ref. @38#, in that chaotic fluctuations allow for th
persistence of coexisting species and habitats, even in u
vorable conditions.

Using a simple argument based on the measured effec
turbulent diffusivities of Okubo@19#, we have shown, for ou
specific reaction model, that a blowout bifurcation to patc
dynamics is possible at a physically realistic scale of 100 k
However, it should be noted that this estimate is likely to
larger than estimates based upon better descriptions of
ing ~and so coupling! in turbulent flows. Time scales of larg
scale patchiness show that spatiotemporal variations in
dynamics can occur over a time span of weeks and mo
@2,26#. These variations may be associated with burst
events from synchronicity~on similar time scales!, as may be
observed in Fig. 3. Continuum approaches to spatiotemp
plankton dynamics have usually included turbulent advec
either by employing a simple, fixed-scale diffusive ter
@4,25# with spatial parameter variations, or some form
turbulent flow field @2,39#. In this paper, one view of ou
nonsymmetric coupling could be that of the turbulent~diffu-
sive! transport of plankton, at some specified length sc
While these two approaches differ in their structure a
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methods, further work should concentrate on how these
viewpoints link together.

Initial numerical analyses of the case where the syste
are no longer identical identified an area around the cha
regime where the coupling strength needed to see sm
generalized synchronization of the patches was at its low
In Ref. @35#, we investigate whether this is an isolated ph
nomenon as this could hint at an even more complex role
chaos in coupled population models.

From macro to micro scales, many ecosystems exhib
patchy structure and factors such as migration mean
each population patch may be coupled to several of the
ers. With the added problems of irregular geometries a
nonuniform coupling effects, it seems reasonable that a s
tially discrete approach may sometimes be more appropr
and advantageous for the analysis of the dynamics.
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APPENDIX A: LOCALLY ORIGINATING
GLOBAL BLOWOUT

To analytically demonstrate why a locally originatin
blowout bifurcation must manifest itself as a global loss
synchronization, we first assume that there is some valu
e i.0 below which the maximal normal Liapunov expone
corresponding to the fate of small perturbations to the s
chronization manifold inSi @see Eq.~12!#, l'

max(i), is posi-
tive.

By the multiplicative ergodic theorem of Oseledec@40#,
we can decompose the space orthogonal to the synchro
tion manifold, TMS

' , in the following manner. There exis
linear subspacesF1.•••.Fk , such thatTMS

'5F1% •••

% Fk @wherek5m(n21)], and

l'
j 5 lim

T→`

1

TE0

T

lniPTM'sDGt~v!idt ; vPF j\F j 11 ,

~A1!

wherel'
1 .•••.l'

k , i•i is the Euclidean norm onRm(n21)

and thel'
j are the Liapunov exponents normal toMS . Next,

we define the linear time evolution operatorL(t) for z(t),
which satisfies the following set of equations:

z~ t !5L~ t !z~0!,

dL~ t !

dt
5J'L~ t !,

L~0!5Im(n21) , ~A2!

whereJ' is the bracket on the right hand side of Eq.~9!.
The normal Liapunov exponents can now be defined@7,18#
to be the logarithms of the eigenvalues of the following lim
iting matrix:
3-9
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lim
t→`

@LT~ t !L~ t !#1/2t. ~A3!

Let W1 , . . . ,Wk be the eigenspaces of the eigenvalu
a1 , . . . ,ak of the limiting matrix defined in Eq.~A3!. Now,

Fk5Wk

Fk215Fk% Wk21 ,

A

F15F2% W1 . ~A4!

Let us now consider some generic transverse perturba
vectorwPTMS

' , where

w5w11w21•••1wk ~A5!

andwjPWj . Since the matrixLT(t)L(t) is symmetric, the
eigenvectors are orthogonal. Hence,

iwi25(
j 51

k

iwj i2, ~A6!

and furthermore, withwTLT(t)L(t)w5iL(t)wi2, we see
that

iL~ t !wi25(
j 51

k

iL~ t !wj i2. ~A7!

Using the fact thatl'
j 5 ln(aj),

iL~ t !wi2'e2l'
1 tiw1i21•••1e2l'

k tiwki2, ~A8!

and if we factor out the term ine2l'
1 t we have that

iL~ t !wi2'e2l'
1 t~ iw1i21e2(l'

2
2l'

1 )tiw2i21•••

1e2(l'
k

2l'
1 )tiwki2!. ~A9!

Now, as t→`, e2(l'
j

2l'
1 )t→0 becausel'

1 .•••.l'
k .

This means that the long term behavior of the perturbatiow
is dominated by the first term in Eq.~A8!. However, we have
one positive normal exponent and by definition this must
l'

1 5l'
max(i). Hence, any generic perturbation will be exp

nentially expanded and we have a global blowout.

APPENDIX B: SMOOTH GENERALIZED
SYNCHRONIZATION IN COUPLED

OSCILLATOR ARRAYS

For the case of bidirectional coupling, as considered h
the paper by Josic@31# outlined the conditions needed to s
smooth generalized synchronization in near-identical s
03191
s

on

e

e,

s-

tems using invariant manifold theory. We now give a br
review of the essential results. Let us consider the follow
coupled dynamical system:

ṡ15F~s1!1G1~s1 ,s2!,

ṡ25F~s2!1G2~s1 ,s2!, ~B1!

in R2m. Assuming that them-dimensional synchronization
manifold MS is invariant and locally attracting, what hap
pens after a small perturbation to the underlying dynam
defined at least in magnitude by«!1.

For a suitably small perturbation, if the original invaria
manifold ~and the attracting stateA therein! is normally k-
hyperbolic~for some positive integerk), then the invariant
manifold resulting from the perturbed dynamics,MS

« , will be
diagonal-like@31# and diffeomorphic@27# to MS . The notion
of normal k-hyperbolicity is the same as that in Eq.~16!,
save that the contraction of vectors normal to the manif
must now bek times greater than that of vectors inside t
tangent space of the manifold.

This means that, given the projections,P1 and P2, of
orbits on the attractorA onto the phase spaces of the su
systems,s1 and s2, respectively, the diagonal-like nature o
the perturbed manifoldMS

« implies the existence of a diffeo
morphism between the setsP1(A«) and P2(A«). So, we
have the existence of some diffeomorphismw such that
s2(t)5w(s1(t)), for orbits on the attractoronly. In fact, the
perturbed attractorA« can be expressed as the graph of t
function w:Rm→Rm.

Now, we generalize these ideas ton-coupled oscillators by
noticing that the identical synchronization manifold is aga
an m-dimensional submanifold of the full phase space
Rmn. Suppose once again that there exists a locally attrac
stateA,MS . As before, if we can guarantee that the larg
Liapunov exponent normal toMS is smaller than the smalles
Liapunov exponent inside ofMS ~or k times smaller for nor-
mal k-hyperbolicity! then the synchronization manifold wil
persist, becomingMS

« , which is diffeomorphic toMS . Once
again, this means that, given the projectionsP i onto the
phase space of the subsystem denoted byi, there exists a
diffeomorphismw i between the setsP i(A«) andP i 11(A«),
for i 51, . . . ,n21. Consequently,; iÞ j , the vectorsj (t) is
~smoothly! expressible in terms of the vectorsi(t). We can
also analogously express the generally synchronized attra
as the graph of the functionF:Rm→Rm(n21) and

@s2~ t !,s3~ t !, . . . ,sn~ t !#5F„s1~ t !…, ~B2!

where

F i5w isw i 21s•••sw1 . ~B3!

The generalization mentions nothing of the type of co
pling in the oscillator array, save the caveat that the ident
synchronization manifold be invariant under the~unper-
turbed! lattice dynamics.
3-10
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